Stochastic Billiards for Sampling from the Boundary of a Convex Set

نویسندگان

  • A. B. Dieker
  • Santosh Vempala
چکیده

Stochastic billiards can be used for approximate sampling from the boundary of a bounded convex set through the Markov Chain Monte Carlo (MCMC) paradigm. This paper studies how many steps of the underlying Markov chain are required to get samples (approximately) from the uniform distribution on the boundary of the set, for sets with an upper bound on the curvature of the boundary. Our main theorem implies a polynomial-time algorithm for sampling from the boundary of such sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chaotic billiards , by Nikolai Chernov and Roberto

Studies of the dynamical systems of billiard type (or simply billiards) form one of the most fascinating and notoriously difficult areas in the modern theory of dynamical systems. Billiards are visual and arise naturally in applications (primarily in classical mechanics, statistical mechanics, optics, acoustics, and quantum physics). For instance, the Boltzmann gas of elastically colliding ball...

متن کامل

A Family of Chaotic Billiards with Variable Mixing Rates

A billiard is a mechanical system in which a point particle moves in a compact container Q and bounces off its boundary ∂Q; in this paper we only consider planar billiards, where Q ⊂ R. The billiard dynamics preserves a uniform measure on its phase space, and the corresponding collision map (generated by the collisions of the particle with ∂Q, see below) preserves a natural (and often unique) a...

متن کامل

On the Bernoulli property of planar hyperbolic billiards

We consider billiards in bounded non-polygonal domains of R with piecewise smooth boundary. More precisely, we assume that the curves forming the boundary are straight lines or strictly convex inward curves (dispersing) or strictly convex outward curves of a special type (absolutely focusing). It follows from the work of Sinai, Bunimovich, Wojtkowski, Markarian and Donnay [S, Bu2, W2, M1, Do, B...

متن کامل

Maximizing Orbits for Higher Dimensional Convex Billiards

The main result of this paper is, that for convex billiards in higher dimensions, in contrast with 2D case, for every point on the boundary and for every n there always exist billiard trajectories developing conjugate points at the n-th collision with the boundary. We shall explain that this is a consequence of the following variational property of the billiard orbits in higher dimension. If a ...

متن کامل

An Analytical Solution for Inverse Determination of Residual Stress Field

An analytical solution is presented that reconstructs residual stress field from limited and incomplete data.  The inverse problem of reconstructing residual stresses is solved using an appropriate form of the airy stress function.  This function is chosen to satisfy the stress equilibrium equations together with the boundary conditions for a domain within a convex polygon.  The analytical solu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2015